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Spiral wave dynamics under feedback control derived from a variety of sensory domains

On-Uma Kheowarf, Supichai Kantrasiri, and Prapin Wilairat
Department of Chemistry, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand

Ulrich Storb and Stefan C. Mller
Institut fir Experimentelle Physik, Otto-von-Guericke-Universitat Magdeburg, Universitatsplatz 2, D-39106 Magdeburg, Germany
(Received 11 May 2004; published 29 October 2004

The dynamics of rigidly rotating spiral waves in a reaction layer with light-dependent excitability is studied
by numerical integration of a reaction-diffusion equation system with a feedback control. The feedback signal
is derived from sensory domains with different geometries by introducing an algorithm that computes the
illumination intensity to be proportional to the average wave activity in these domains. It is shown that the
shape and size of the trajectories of the spiral wave tip as well as the stability of the spiral rotation depend
sensitively on the choice of the geometry of the sensory domain. The numerically observed effects are comple-
mented by constructing a flow map based on an analysis of the feedback signal.
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I. INTRODUCTION domain on the dynamics of the rotating spirfds-13. We
) . ) ) apply the feedback with different shapes and sizes of the
The implementation of control strategies to manipulatejomain and find a broad spectrum of dynamical responses,
complex oscillations and spatiotemporal patterns has becomgejuding various shapes of the spiral tip trajectories and the
a central issue of nonlinear dynamics. Feedback methodsyitching between their stability properties. A flow map and

provide one of the possible control techniques that yield nevy pifurcation diagram are constructed in order to analyze the
modes of spatiotemporal behavifit,2]. These techniques gpserved phenomena.

may be designed in different ways. A feedback is global or
nonlocal, in contrast to local techniques, if the control signal
represents a sum of contributions from all or many parts of II. SIMULATION METHOD

the system. Such feedbacks have been used, for instance, to

control spatiotemporal activity in the Pt-catalyzed oxidation Our computations are performed with the light-sensitive
of CO [3], suggesting a means for enhancing catalytic effitwo-variable Oregonator modgll9-21, which has been
ciency[4], in gas discharges to suppress plasma instabilitiesuccessfully used to describe the dynamics of the photosen-
[5], in electrochemical systems to influence spatial couplingitive BZ system by including a flux termp=¢(t) for the
among different active sitef], and in semiconductors in light-induced bromide productiof21]:

connection with charge transport phenomé¢np Propagat-

ing waves[8] and, in particular, spiral wavg®9-12 in the M =D, Vau+ 1 u-u?-(fo + ¢)M , (1)
Belousov-ZhabotinskyBZ) reaction[13,14 have also been at € (u+q)
controlled by using these feedback methods, which points to

the possibility of manipulating dynamical patterns in excit- v

able media including excitable biological tissya$—17. A U (2)

recent advance in this direction is the control of seizurelike

events in hippocampal brain slices with adaptive electridiere, the variablesi and v describe the evolution of the

fields [18]. Thus, the ability to regulate spatiotemporal be-concentration of the autocatalytic species HBréhd the

havior provides both a means of generating desired dynampxidized form of the catalyst, respectivelip,=1 is the

cal patterns and the tools for probing underlying mechascaled diffusion coefficient of variable The catalyst is as-

nisms. sumed to be immobilized in a gel matrix; thus, the variable
In this work we perform a numerical study of rigidly ro- does not diffuse in this modéD,=0). The parameters have

tating spiral waves subjected to a nonlocal feedback derivethe values:=0.05,q=0.002, and =3.5, which are kept con-

from a confined “sensory domain.” A time-dependent spastant. The computations were performed by an explicit Euler

tially uniform modulation of the system’s excitability is method, using the five-point approximation of the Laplacian

taken to be proportional to the integral light absorption ob-on a 384x 384 array with a grid spacingh=0.5 s.u. and

served within this domain. Of both theoretical and practicattime stepAt=0.001 t.u..

interest are the geometrical features of the applied sensory The feedback signal is determined by the integral of wave

activity taken over the sensory domains, expressef@s

B(t) = o + ke[ B(t) = Bol, 3
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B= f uds (4)
S

where ¢y is constan{=0.01). Thus, the intensity of the feed-
back signal is controlled by the coefficiekd, and depends

linearly on the integral valu® of the variableu over the

domainS. The constanB, refers to this integral averaged
over one period of a spiral placed in the domain center with
constant flux termp(t) = ¢.

Ill. RESULTS

A single spiral is induced from the equation syst€h
and(2) by choosing a special initial conditid3]. The vari-
ablesu andwv are initially set to zero uniformly in the me-
dium. To create a spiral then we introduce a nonuniform
distribution of the variables. A superthreshold valirel is
given along a line near the boundary of the excitable medium
to induce a propagating wave. After this wave has reached
the center of the excitable medium, one-half of the planar
wave is erased by resettingrv=0. Subsequently, the open
end of the planar wave curls into a spiral wave with its core
located near the center of the excitable medium. Without
external forcing and with the above chosen parameter values,
the spiral wave rotates rigidly around a circular core with a  FIG. 1. Trajectories of the spiral wave tip derived from simula-
rotation periodTo=8.2 t.u. and a wavelength=4.1 s.u.. _tic_Jr_ls for di_fferent shap_es of the sensory dqmain starti_ng from an
There is ample evidend®-11,23 that for this kind of non- |n_|t|al location of the spiral core at the dom_aln centey. Triangle,
local feedback a spiral wave core placed initially at the cenSide length 1.50, k=0.05; (b) square, side length 1.80 ke,
ter of the sensory domain is destabilized for the case of g°-11:(C) pentagon, side length 0.X5ks,=0.15;(d) circle, diam-
positive coupling constark;, and starts to drift away from ?ter 1:0(), kfb:0.08,.(e)—°(g) rt‘ombus’ os'de Iengt_h 1.80and ki
the center, as shown in all of the examples of Fig. 1. A'O'lo’ acute angles: 80°, 70°, and 60°, reSpeCt'V?Iy' .The fe(.edbad(

. . . . mechanism is computed from Eg8) and(4). Arrows indicate drift
previous systematic study of circular sensory domains ha&irection of the spiral core
shown that it frequently moves asymptotically on a circular '
attractor[9]. Now the drift velocity of the spiral wave core changes dras-

In our simulations we find how the shape of this type oftically along the oblong pathway. It becomes very slow when
spiral tip trajectories is transformed when the shape of thehe spiral wave core is far away from the center of the rhom-
sensory domain is varied. For a triangular domain the feedbic domain. The results demonstrate that the shape of the
back induces the spiral core to drift away from the domainsensory domain is reflected in the dynamics of the spiral tip
center and to make a turn on each side with an overall 120ttajectory.
change of the drift direction. Finally it describes a trajectory Besides the shape of the domain it is also its size that
with an approximately threefold symmetf¥rig. 1(a]. An plays a crucial role for the spiral dynamics, as shown in Fig.
increase of the number of corners of the sensory domai@. We use the square-shaped domain with side ledgto
results in an increase of the number of turning points of thestudy this effect. For a rather small sigg,=0.7\) one ob-
drift direction, as shown in Figs.(tt) and Xc). For a square- tains a circular attractoffFig. 2(a)], not reflecting the four-
shaped domaifiFig. 1(b)], the trajectory describes a square- fold symmetry of the sensory domain. The circular trajectory
shaped pathway, which is rotated by about 45° with respedtansforms to a square fog=1.0n [Fig. 2b)], similar to the
to the domain. A further increase in the number of domainone in Fig. 1b). For domains larger than the spiral wave-
corners to form a pentagdifrig. 1(c)] produces a trajectory length the size of the attractor decreases, as shown in Fig.
that follows an approximately pentagonal pathway inside the(c) whered=1.25\.
domain. It appears to be almost circular, because the five Note that the drift velocity in Fig. @) is larger than that
rounded corners of the domain are only faintly reflected. Foin Fig. 1(b). This increase is connected with the choice of a
perfect symmetry, as for the circular domain in Figd)Lthe  larger feedback coupling strength. In fact, we found that for
trajectory describes a circular pathway around the domain.fixed size and shape of the sensory domain lakggvalues

Exerting some shear on the square-shaped domain caudead to a faster drift, as long as the shape of the tip trajectory
a transformation of the trajectory from a square to a rhombigs rather simple as, for instance, for the case of square do-
pathway, as shown in Figs(e) and Xf). A further decrease mains with sized,<1.5\. For largerd, the tip dynamics
of the acute angle of the rhombus induces the trajectory thecomes complegsee belowand the influence df;, cannot
form a large oblong excursion around the don{&iy. 1(g)]. be easily predicted.
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center. However, the attractor, which is eventually reached, is
determined not only by the initial location of the spiral core
but also by the initial location of the tip with respect to the
core cente(the initial phasg Thus the location of the sepa-
ratrix depends on this initial phase, which slightly blurs this
separating line. We checked numerically that the blurring
effect of the initial phase is below 0.024
An interesting cross-shaped trajectory is created when in-
creasing the domain size th=2.25\ [Fig. 2e)]. This tra-
jectory can be considered as a combination of four small
pieces of square-shaped trajectories, which are linked to-
gether. With a further increase df to 2.4Q\, there appear
four trajectories, which are separated from each ofRag.
/9’ 2(f)]. Note that the shape of the trajectories changes from a
I
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squarelike to a droplike form. Which of these four possible

R

stable orbits is reached depends now on the initial location of
the unperturbed spiral core center. The approximate separa-
trices between the basins of attraction of each orbit are

i
------ @ 4 E shown by dashed boxgEig. 2(f)].
I

SIS - - S—

The dynamics of the four attractors in FigifRcan be
stabilized by enlarging the domain th=2.50\ [Fig. 20)];
the unperturbed spiral wave core is placed at four different
locations inside the domain. The feedback induces the spiral
wave core to drift towards four stable poinisdicated by
arrows, located approximately at the corners of the refer-
ence domainds=\ [dotted square in Fig.(8)]. At these
points, the spiral rotates rigidly without drift. When the do-
main size is further increased th=3.0Q\, the locations of
these four points become again unstgidlg. 2(h)]; i.e., the
spiral wave drifts again along a droplike pathway. Note that
the drift direction of these droplike attractors is clockwise
and the petals of the loopy trajectories are directed outwards,
in contrast to those in Fig.(B. In addition, a new square-
shaped trajectory with inward directed petals appears around
the center of the domain.
The dynamics of the trajectories in Fig. 2 can be divided
FIG. 2. Trajectori_es of spirgl wave tip under variation of the sizejntg two types: stable and unstable spiral rotation. Stable
of the square domaina)~(h) Side lengthd;=0.7Q\, 1.0Q\, 1.2\, rtation means that the spiral rotates rigidly without drift, as
150\, 2.2, 2.4Q\, 2.5\, .3‘0.0‘; kfb:0'05.’ 0'1.5’ 0:12' 0.20, 0'49’ illustrated by the trajectories in Figs(d (small attractor at
gésrg’ ?Hio&:s;;gd /:;rgzgfeslr\]/\igig\ei;rgjiecgtrelﬁthdérzgt;;?gx%:;?:|§£;r-al the centerand 2g). All other trajectories in Fig. 2 for which
tion -of the separatrix of basins of attraction, whereas the dotteéhg motion of spiral waves IS accompanied by a drift of the
' Spiral wave core are considered as an unstable rotation.
hese results demonstrate that enlarging the domain size

squares depict a reference domé&il=\). The gray curve ind)

shows the transient trajectory, before a circular, stable rotation i . . .
eads to a series of switches from unstable to stable spiral

rotation and vice versa.

achieved at the centéblack circle.

==

Two trajectories are observed fdg=1.5Q\ [Fig. 2(d)]. A
small, flowerlike trajectory occurs at the center of the do- IV. DISCUSSION
main, when the unperturbed spiral core is initially placed ) o ] =
close to the domain center. Note that the gray curve in Fig. Our discussion is based on the analysis of the interal
2(d) represents the transient trajectory before a circularlEQ- (4)] as a function of the rotation angle of spirals placed
stable rotatior(black circlg is achieved at the center. For a at different locations inside or outside the square-shaped con-
larger initial distance to the domain center, the spiral core igrol domain. It has been shown that the phase of the signal
attracted towards a trajectory describing a large square wittvhich determines the phase of the modulafigq. (3)], pre-
rounded corners. Its orientation coincides with that of thedominantly affects the drift direction and consequently the
domain, in contrast to the trajectories in Figéh)2and Zc), shape of the trajectory12]. The average area under this
which are rotated by about 45° with respect to the domaincurve is an appropriate measure for the drift velocity in the
The dashed square with side lengthn Fig. 2d) indicates range of the sensory domains considered hé&#. The
the approximate location of the separatrix between two baphase relation and the average area form the basis of the flow
sins of attraction that exist for the motion of the spiral coremaps constructed inside and outside the sensory domains as
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@ LSITNerih IRt s jectories(side length about XL and 3\) on which they are
g;-w::: Rt axassarttinel S Yz caught in a counterclockwise motion. The flow map unravels
S Lt VR S I ean T the existence of a discrete set of stable square-shaped orbits,
DIEETR L AL TR A AT AR ; ; ;
23EETR A ,,::::::::::*j,,fg;;: which appear to be attractors for the spiral core drift. The
vEel e ;::““:;w iy ‘::;*‘: innermost trajectory corresponds to the attractor presented in
esh s ORIZEENNNAL ) Fla et Figs. Xb) and 2b). For the flow map observed for negative
"’"”"a;gzzv‘"},‘?:‘-zl5\*"” . - . . . .
:‘”:;:”»'T}T Y ';:::::::: feedback[Fig. 3(b)], which is obtained by considering the
a = . - . . .
::::“; 73 I:jg ﬂ:::Z: v s signal B mirrored with respect to the reference liBs=B,
::::: K ’;3_:&*’:3': C:::::I: corresponding to negative sign kf, in Eq. (3), most of the
BTN £ AT ke 15T flow vectors inside the domain spiral slowly into the domain
Tt S S A SR center to form a stabilized rotation. This stabilization is con-
. 3-';.’31“‘;::::::1“ 5_:;::2'? *::: firmed by the simulation result for the tip motion in Figcg
:::H:I::;: 33311123’7:«‘“‘;‘;1 In a certain region outside the domain the vectors flow to-
R AT S D e VA wards a square-shaped trajectory with a side length of about
2\. These flow maps illustrate how the dynamics of the spi-
PR R & I P FEEELLN . . . K
(b)./-* AR VIPO ST L 12 ¥4 ral wave can be drastically changed by switching the sign of
SRV SR the feedback gai
LT R F M-S A5 L B Dot ) € feeaback gain. )
PSR ST R R L ST Nl Additional flow maps of the spiral core center under
:kﬂa_,‘&‘{‘,‘.'é;%unﬂ;v*f.k{Jx,‘_,a - . . . .
IR A SRR R LA S-S B variation of the domain size are shown in Fig. 4. The flow
LR NS 2T Xt ?'a.,.,a/"r*'\c.‘_‘ y (C) . . . . > .
RPN (AL L B B B ahhlfF ) L5 Sulie map for the domain wittdg=1.5Q\ is depicted in Fig. ).
u.,‘~‘,..n'€ 'Ia.;_.\".\_,aff't'&*‘ v
ee ppextrpaaTunnl et l )0 Here, most of the vectors are attracted towards two types of
..(...,,,.:kfﬂza_,s& ,‘_‘—v”k*‘.‘ f . . .
PRANIOPERT S F = 2 B8 ST 58 é stable states: a fixed point at the center and a square-shaped
RN EEE 5L 5 Bt ad p : = e A
R R L LAY S orbit in agreement with the trajectories in Figd® The ba-
LR RS LA LY L Mt A S T 2O . ;
LR B AL LA B A L L iy sin of attraction of the two states are separated by the sepa-
""";"sﬁ‘l‘f s‘,{"&‘_’a)‘fk;(,‘* . . . .
R B YT RS 7 D ratrix indicated by the dashed square with side length
% - . . . . . . .
,»::,{;}'}1‘.‘1‘;:’;}}’;{:}#‘;'11‘.3 Solid, open, and checked circles in this figure indicate three
> - . . . . . .
g‘;e:*::;;;’i} ;;;::::e‘;“&‘, 337 types of fixed points(i) the stable nodésolid circle), which
I L i \:",’,'f” attracts the vector field from all directiongi) the unstable
a..‘)"'“,(.s'&‘c-t-v.q-.,, i h“’” ®

node(open circlg, which repels the vector field in all direc-

FIG. 3. (a), (b) Vector field plots of the trajectories of the spiral 1ONS; and(iii) the saddle point, which attracts the vector in
core center under feedback control derived from a square domai@n€ direction but repels it in the direction perpendicular to it.
with ds=\ for positive feedbacka) and negative feedbadk). ()  FOr the flow map in Fig. &) there is one stable node located
Trajectory of the spiral wave tip under negative feedback controRt the center of the domain. It corresponds to the stabilization
with feedback parametek=1\ andkq,=-0.15. The arrow indi-  Of rigid rotation and thus to the small attractor in Figd In
cates the drift direction of the spiral core. Note that the coefficientaddition to the stable node at the center of Figp)4there
ki is not involved in the construction of the vectors in the flow appear four unstable nodes at the corners and four saddle
map. points on the edges of the reference domdeshed squaye

The flow map for a larger domais=2.50\) is shown in
shown, for instance, in Fig. 3 fads=A. The flow vectors Fig. 4b). It corresponds to the trajectories in FiggR The
observed for positive feedbaclFig. 3(@)], which corre- locations of the four stable nodes in this map coincide with
sponds to the simulation results observedkige>0 in Figs.  those of the unstable ones fdy=1.5\ [Fig. 4@)]. Since the
1(b) and 2b), are attracted towards two square-shaped tradistribution of neighboring nodes for each of them is equal to
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FIG. 4. Flow maps of the spiral core center under variation of the domain sizes for positive feedbaakdferl.5Q\, (b) ds=2.5Q\,
and (c) ds=3.0Q\. Vectors show the drift direction of the spiral core center, which its size indicates the drift velocity. The dashed line
indicates the location of the separatrix, which restricts the basin of each attractor. Solid, open, and checked circles indicate the fixed points:
stable node, unstable node, and saddle point, respectively.
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served. Instead the spiral core moves asymptotically on
closed attractive orbits, as previously illustrated for the tra-
jectories evolving from unstable fixed points in Fig[ex-
cept for Fig. 2g) and the small attractor in the middle of Fig.
2(d)]. These properties of these orbits have some analogy to
limit cycles in phase space. The number of fixed points in-
creases stepwise with increasing domain size. Focusing on
the stable fixed pointésolid barg, their number increases as
9 1, 4, 9,.., corresponding to the relatioR,,=n? mentioned
above. In addition, the stability of the fixed points changes
also with enlarging the domain. For example, consider the
stability of the fixed point located at the center of the domain
(distancel =0): the dynamics of this point is unstable for
ds/A<1.5 and becomes stable for ¥%/\<2.0. For
ds/A=2.0 it is unstable untitiy/ A = 3.5. Note that the saddle
points (dashed bapskeep their characteristics with increas-
FIG. 5. Bifurcation of the spiral wave rotation under confined- ing ds.
domain feedback control. Number of fixed points inside the sensory
domain is illustrated as a function of the normalized size of the
domain,ds/\. Distancel from the domain center of the fixed point
is shown on they axis. Solid, dashed, and dotted bars indicate the  Qur results demonstrate that the dynamics of the spiral
fixed points: stable node, saddle point, and unstable node, respegraves under nonlocal feedback control depends sensitively
tively. Inserted numbers show the total number of fixed points forg the geometry, shape and size of the sensory domain, from
each range ofl, Gray bands indicate the range where no stableyhic the feedback signal is derived. The results in Fig. 1
rotating spirals exist. show that the geometry of the sensory domain is reflected in
the shape of the spiral tip trajectory. For a fixed domain
that for the casel,=1.5\, we find a fourfold symmetric rep- Shape—e.g., a square—a small increase of the domain size
etition of the pattern of Fig. @). The stability of the four ~results in a decrease of the trajectory size as seen when com-
fixed points is lost when enlarging the domain size by abouParing Fig. 2b) with 2(c) and Fig. Zf) with 2(g). Several

20

1.5F

1A

0.5 F

e
d/\

V. CONCLUSIONS

0.5\, as shown in Fig. &) for d;=3.0n. Here, all the fixed
points that are stable in Fig(l¥) become unstable.

The number of fixed points inside the square domain is 9gynamics can be divided into two types, stable and unstable
25, and 49 for the side lengtltg=1.5\, 2.5\, and 3.Q. in

Figs. 4a)—4(c), respectively. Note that for domains smaller

shapes of the trajectory can be observed by enlarging the
domain. Along the axis of increment of the domain size, the

rotation, as shown in Figs. 2 and 5.
An explanation of the numerically observed effects is pro-

than 1.5, there exists only one unstable fixed point, which isposed by using flow maps constructed from the analysis of
located at the center of the domain, as shown in Figsthe feedback signal. The flow maps in Fig. 3 reveal that our
2(a)-2(c) and Fig. 3a). However, the domain should not be feedback forcing leads to the existence of a discrete set of
too small—i.e., smaller than the spiral core. Because if suclstable square-shaped orbits, which appear to be attractors for
a small domain is located inside the core, there will be nahe spiral core drift. In addition, the flow maps demonstrate

modulation of the signal and consequently no feedback.

The total number of fixed points;,,, can be described as drastically changed by switching the sign of the feedback
a function of the the size of the domaily according toF,,
=(2n+1)?, wheren=[ds/\ - (ds/\ mod 1)]. For example, if

ds=1.5\, thenn=1 and thereford-,=9, as shown in Fig.

that the local and global dynamics of the spiral wave can be

gain[see Figs. &) and 3b)]. It is shown that the shape and
size of the trajectories of the spiral wave tip, as well as the
stability of the spiral rotation, can be changed by varying the

4(a). Furthermore, the number of each type of fixed point issize or shape of the sensory domain. We suggest that the
expressed ag§) number of stable nodeBg,=n?, (i) number

of saddle pointsf¢q,=2n(n+ 1), and(iii ) number of unstable

nodes,F,,=(n+1)2. One can see clearly th&,=Fg,+Fg4n,
+Fu. Note that these relationships can be used dgr
=1.5\. Fords<1.5\, F,=F,,=1 as mentioned above.

feedback method introduced in this work offers an efficient
tool for controlling the dynamics of excitable media in biol-

ogy [15-17.
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