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The dynamics of rigidly rotating spiral waves in a reaction layer with light-dependent excitability is studied
by numerical integration of a reaction-diffusion equation system with a feedback control. The feedback signal
is derived from sensory domains with different geometries by introducing an algorithm that computes the
illumination intensity to be proportional to the average wave activity in these domains. It is shown that the
shape and size of the trajectories of the spiral wave tip as well as the stability of the spiral rotation depend
sensitively on the choice of the geometry of the sensory domain. The numerically observed effects are comple-
mented by constructing a flow map based on an analysis of the feedback signal.
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I. INTRODUCTION

The implementation of control strategies to manipulate
complex oscillations and spatiotemporal patterns has become
a central issue of nonlinear dynamics. Feedback methods
provide one of the possible control techniques that yield new
modes of spatiotemporal behavior[1,2]. These techniques
may be designed in different ways. A feedback is global or
nonlocal, in contrast to local techniques, if the control signal
represents a sum of contributions from all or many parts of
the system. Such feedbacks have been used, for instance, to
control spatiotemporal activity in the Pt-catalyzed oxidation
of CO [3], suggesting a means for enhancing catalytic effi-
ciency [4], in gas discharges to suppress plasma instabilities
[5], in electrochemical systems to influence spatial coupling
among different active sites[6], and in semiconductors in
connection with charge transport phenomena[7]. Propagat-
ing waves[8] and, in particular, spiral waves[9–12] in the
Belousov-Zhabotinsky(BZ) reaction[13,14] have also been
controlled by using these feedback methods, which points to
the possibility of manipulating dynamical patterns in excit-
able media including excitable biological tissues[15–17]. A
recent advance in this direction is the control of seizurelike
events in hippocampal brain slices with adaptive electric
fields [18]. Thus, the ability to regulate spatiotemporal be-
havior provides both a means of generating desired dynami-
cal patterns and the tools for probing underlying mecha-
nisms.

In this work we perform a numerical study of rigidly ro-
tating spiral waves subjected to a nonlocal feedback derived
from a confined “sensory domain.” A time-dependent spa-
tially uniform modulation of the system’s excitability is
taken to be proportional to the integral light absorption ob-
served within this domain. Of both theoretical and practical
interest are the geometrical features of the applied sensory

domain on the dynamics of the rotating spirals[9–13]. We
apply the feedback with different shapes and sizes of the
domain and find a broad spectrum of dynamical responses,
including various shapes of the spiral tip trajectories and the
switching between their stability properties. A flow map and
a bifurcation diagram are constructed in order to analyze the
observed phenomena.

II. SIMULATION METHOD

Our computations are performed with the light-sensitive
two-variable Oregonator model[19–21], which has been
successfully used to describe the dynamics of the photosen-
sitive BZ system by including a flux termf=fstd for the
light-induced bromide production[21]:
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Here, the variablesu and v describe the evolution of the
concentration of the autocatalytic species HBrO2 and the
oxidized form of the catalyst, respectively.Du=1 is the
scaled diffusion coefficient of variableu. The catalyst is as-
sumed to be immobilized in a gel matrix; thus, the variablev
does not diffuse in this modelsDv=0d. The parameters have
the values«=0.05,q=0.002, andf =3.5, which are kept con-
stant. The computations were performed by an explicit Euler
method, using the five-point approximation of the Laplacian
on a 3843384 array with a grid spacingDh=0.5 s.u. and
time stepDt=0.001 t.u..

The feedback signal is determined by the integral of wave
activity taken over the sensory domains, expressed as[22]

fstd = f0 + kfbfB̃std − B̃0g, s3d

with
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B̃ =E
S

udS, s4d

wheref0 is constants=0.01d. Thus, the intensity of the feed-
back signal is controlled by the coefficientkfb and depends

linearly on the integral valueB̃ of the variableu over the

domain S. The constantB̃0 refers to this integral averaged
over one period of a spiral placed in the domain center with
constant flux termfstd=f0.

III. RESULTS

A single spiral is induced from the equation system(1)
and(2) by choosing a special initial condition[23]. The vari-
ablesu and v are initially set to zero uniformly in the me-
dium. To create a spiral then we introduce a nonuniform
distribution of the variables. A superthreshold valueu=1 is
given along a line near the boundary of the excitable medium
to induce a propagating wave. After this wave has reached
the center of the excitable medium, one-half of the planar
wave is erased by resettingu=v=0. Subsequently, the open
end of the planar wave curls into a spiral wave with its core
located near the center of the excitable medium. Without
external forcing and with the above chosen parameter values,
the spiral wave rotates rigidly around a circular core with a
rotation periodT0=8.2 t.u. and a wavelengthl=4.1 s.u..
There is ample evidence[9–11,22] that for this kind of non-
local feedback a spiral wave core placed initially at the cen-
ter of the sensory domain is destabilized for the case of a
positive coupling constantkfb and starts to drift away from
the center, as shown in all of the examples of Fig. 1. A
previous systematic study of circular sensory domains has
shown that it frequently moves asymptotically on a circular
attractor[9].

In our simulations we find how the shape of this type of
spiral tip trajectories is transformed when the shape of the
sensory domain is varied. For a triangular domain the feed-
back induces the spiral core to drift away from the domain
center and to make a turn on each side with an overall 120°
change of the drift direction. Finally it describes a trajectory
with an approximately threefold symmetry[Fig. 1(a)]. An
increase of the number of corners of the sensory domain
results in an increase of the number of turning points of the
drift direction, as shown in Figs. 1(b) and 1(c). For a square-
shaped domain[Fig. 1(b)], the trajectory describes a square-
shaped pathway, which is rotated by about 45° with respect
to the domain. A further increase in the number of domain
corners to form a pentagon[Fig. 1(c)] produces a trajectory
that follows an approximately pentagonal pathway inside the
domain. It appears to be almost circular, because the five
rounded corners of the domain are only faintly reflected. For
perfect symmetry, as for the circular domain in Fig. 1(d), the
trajectory describes a circular pathway around the domain.

Exerting some shear on the square-shaped domain causes
a transformation of the trajectory from a square to a rhombic
pathway, as shown in Figs. 1(e) and 1(f). A further decrease
of the acute angle of the rhombus induces the trajectory to
form a large oblong excursion around the domain[Fig. 1(g)].

Now the drift velocity of the spiral wave core changes dras-
tically along the oblong pathway. It becomes very slow when
the spiral wave core is far away from the center of the rhom-
bic domain. The results demonstrate that the shape of the
sensory domain is reflected in the dynamics of the spiral tip
trajectory.

Besides the shape of the domain it is also its size that
plays a crucial role for the spiral dynamics, as shown in Fig.
2. We use the square-shaped domain with side lengthds to
study this effect. For a rather small sizesds=0.7ld one ob-
tains a circular attractor[Fig. 2(a)], not reflecting the four-
fold symmetry of the sensory domain. The circular trajectory
transforms to a square fords=1.0l [Fig. 2(b)], similar to the
one in Fig. 1(b). For domains larger than the spiral wave-
length the size of the attractor decreases, as shown in Fig.
2(c) whered=1.25l.

Note that the drift velocity in Fig. 2(b) is larger than that
in Fig. 1(b). This increase is connected with the choice of a
larger feedback coupling strength. In fact, we found that for
fixed size and shape of the sensory domain largerkfb values
lead to a faster drift, as long as the shape of the tip trajectory
is rather simple as, for instance, for the case of square do-
mains with sizeds,1.5l. For largerds the tip dynamics
becomes complex(see below) and the influence ofkfb cannot
be easily predicted.

FIG. 1. Trajectories of the spiral wave tip derived from simula-
tions for different shapes of the sensory domain starting from an
initial location of the spiral core at the domain center.(a) Triangle,
side length 1.50l, kfb=0.05; (b) square, side length 1.00l, kfb

=0.11; (c) pentagon, side length 0.75l, kfb=0.15; (d) circle, diam-
eter 1.00l, kfb=0.08; (e)–(g) rhombus, side length 1.00l and kfb

=0.10; acute angles: 80°, 70°, and 60°, respectively. The feedback
mechanism is computed from Eqs.(3) and(4). Arrows indicate drift
direction of the spiral core.
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Two trajectories are observed fords=1.50l [Fig. 2(d)]. A
small, flowerlike trajectory occurs at the center of the do-
main, when the unperturbed spiral core is initially placed
close to the domain center. Note that the gray curve in Fig.
2(d) represents the transient trajectory before a circular,
stable rotation(black circle) is achieved at the center. For a
larger initial distance to the domain center, the spiral core is
attracted towards a trajectory describing a large square with
rounded corners. Its orientation coincides with that of the
domain, in contrast to the trajectories in Figs. 2(b) and 2(c),
which are rotated by about 45° with respect to the domain.
The dashed square with side lengthl in Fig. 2(d) indicates
the approximate location of the separatrix between two ba-
sins of attraction that exist for the motion of the spiral core

center. However, the attractor, which is eventually reached, is
determined not only by the initial location of the spiral core
but also by the initial location of the tip with respect to the
core center(the initial phase). Thus the location of the sepa-
ratrix depends on this initial phase, which slightly blurs this
separating line. We checked numerically that the blurring
effect of the initial phase is below 0.024l.

An interesting cross-shaped trajectory is created when in-
creasing the domain size tods=2.25l [Fig. 2(e)]. This tra-
jectory can be considered as a combination of four small
pieces of square-shaped trajectories, which are linked to-
gether. With a further increase ofds to 2.40l, there appear
four trajectories, which are separated from each other[Fig.
2(f)]. Note that the shape of the trajectories changes from a
squarelike to a droplike form. Which of these four possible
stable orbits is reached depends now on the initial location of
the unperturbed spiral core center. The approximate separa-
trices between the basins of attraction of each orbit are
shown by dashed boxes[Fig. 2(f)].

The dynamics of the four attractors in Fig. 2(f) can be
stabilized by enlarging the domain tods=2.50l [Fig. 2(g)];
the unperturbed spiral wave core is placed at four different
locations inside the domain. The feedback induces the spiral
wave core to drift towards four stable points(indicated by
arrows), located approximately at the corners of the refer-
ence domainds=l [dotted square in Fig. 2(g)]. At these
points, the spiral rotates rigidly without drift. When the do-
main size is further increased tods=3.00l, the locations of
these four points become again unstable[Fig. 2(h)]; i.e., the
spiral wave drifts again along a droplike pathway. Note that
the drift direction of these droplike attractors is clockwise
and the petals of the loopy trajectories are directed outwards,
in contrast to those in Fig. 2(f). In addition, a new square-
shaped trajectory with inward directed petals appears around
the center of the domain.

The dynamics of the trajectories in Fig. 2 can be divided
into two types: stable and unstable spiral rotation. Stable
rotation means that the spiral rotates rigidly without drift, as
illustrated by the trajectories in Figs. 2(d) (small attractor at
the center) and 2(g). All other trajectories in Fig. 2 for which
the motion of spiral waves is accompanied by a drift of the
spiral wave core are considered as an unstable rotation.
These results demonstrate that enlarging the domain size
leads to a series of switches from unstable to stable spiral
rotation and vice versa.

IV. DISCUSSION

Our discussion is based on the analysis of the integralB̃
[Eq. (4)] as a function of the rotation angle of spirals placed
at different locations inside or outside the square-shaped con-

trol domain. It has been shown that the phase of the signalB̃,
which determines the phase of the modulation[Eq. (3)], pre-
dominantly affects the drift direction and consequently the
shape of the trajectory[12]. The average area under this
curve is an appropriate measure for the drift velocity in the
range of the sensory domains considered here[12]. The
phase relation and the average area form the basis of the flow
maps constructed inside and outside the sensory domains as

FIG. 2. Trajectories of spiral wave tip under variation of the size
of the square domain.(a)–(h) Side lengthds=0.70l, 1.00l, 1.25l,
1.50l, 2.25l, 2.40l, 2.50l, 3.00l; kfb=0.05, 0.15, 0.12, 0.20, 0.40,
0.50, 0.50, 0.75. Arrows indicate the drift direction of the spiral
core. The dashed squares withds=l indicate the approximate loca-
tion of the separatrix of basins of attraction, whereas the dotted
squares depict a reference domainsds=ld. The gray curve in(d)
shows the transient trajectory, before a circular, stable rotation is
achieved at the center(black circle).
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shown, for instance, in Fig. 3 fords=l. The flow vectors
observed for positive feedback[Fig. 3(a)], which corre-
sponds to the simulation results observed forkfb.0 in Figs.
1(b) and 2(b), are attracted towards two square-shaped tra-

jectories(side length about 1l and 3l) on which they are
caught in a counterclockwise motion. The flow map unravels
the existence of a discrete set of stable square-shaped orbits,
which appear to be attractors for the spiral core drift. The
innermost trajectory corresponds to the attractor presented in
Figs. 1(b) and 2(b). For the flow map observed for negative
feedback[Fig. 3(b)], which is obtained by considering the
signal B̃ mirrored with respect to the reference lineB=B0
corresponding to negative sign ofkfb in Eq. (3), most of the
flow vectors inside the domain spiral slowly into the domain
center to form a stabilized rotation. This stabilization is con-
firmed by the simulation result for the tip motion in Fig. 3(c).
In a certain region outside the domain the vectors flow to-
wards a square-shaped trajectory with a side length of about
2l. These flow maps illustrate how the dynamics of the spi-
ral wave can be drastically changed by switching the sign of
the feedback gain.

Additional flow maps of the spiral core center under
variation of the domain size are shown in Fig. 4. The flow
map for the domain withds=1.50l is depicted in Fig. 4(a).
Here, most of the vectors are attracted towards two types of
stable states: a fixed point at the center and a square-shaped
orbit in agreement with the trajectories in Fig. 2(d). The ba-
sin of attraction of the two states are separated by the sepa-
ratrix indicated by the dashed square with side lengthl.
Solid, open, and checked circles in this figure indicate three
types of fixed points:(i) the stable node(solid circle), which
attracts the vector field from all directions,(ii ) the unstable
node(open circle), which repels the vector field in all direc-
tions, and(iii ) the saddle point, which attracts the vector in
one direction but repels it in the direction perpendicular to it.
For the flow map in Fig. 4(a) there is one stable node located
at the center of the domain. It corresponds to the stabilization
of rigid rotation and thus to the small attractor in Fig. 2(d). In
addition to the stable node at the center of Fig. 4(a), there
appear four unstable nodes at the corners and four saddle
points on the edges of the reference domain(dashed square).

The flow map for a larger domainsds=2.50ld is shown in
Fig. 4(b). It corresponds to the trajectories in Fig. 2(g). The
locations of the four stable nodes in this map coincide with
those of the unstable ones fords=1.5l [Fig. 4(a)]. Since the
distribution of neighboring nodes for each of them is equal to

FIG. 3. (a), (b) Vector field plots of the trajectories of the spiral
core center under feedback control derived from a square domain
with ds=l for positive feedback(a) and negative feedback(b). (c)
Trajectory of the spiral wave tip under negative feedback control
with feedback parametersds=1l and kfb=−0.15. The arrow indi-
cates the drift direction of the spiral core. Note that the coefficient
kfb is not involved in the construction of the vectors in the flow
map.

FIG. 4. Flow maps of the spiral core center under variation of the domain sizes for positive feedback, for(a) ds=1.50l, (b) ds=2.50l,
and (c) ds=3.00l. Vectors show the drift direction of the spiral core center, which its size indicates the drift velocity. The dashed line
indicates the location of the separatrix, which restricts the basin of each attractor. Solid, open, and checked circles indicate the fixed points:
stable node, unstable node, and saddle point, respectively.
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that for the caseds=1.5l, we find a fourfold symmetric rep-
etition of the pattern of Fig. 4(a). The stability of the four
fixed points is lost when enlarging the domain size by about
0.5l, as shown in Fig. 4(c) for ds=3.0l. Here, all the fixed
points that are stable in Fig. 4(b) become unstable.

The number of fixed points inside the square domain is 9,
25, and 49 for the side lengthsds=1.5l, 2.5l, and 3.0l in
Figs. 4(a)–4(c), respectively. Note that for domains smaller
than 1.5l, there exists only one unstable fixed point, which is
located at the center of the domain, as shown in Figs.
2(a)–2(c) and Fig. 3(a). However, the domain should not be
too small—i.e., smaller than the spiral core. Because if such
a small domain is located inside the core, there will be no
modulation of the signal and consequently no feedback.

The total number of fixed points,Fn, can be described as
a function of the the size of the domainds according toFn
=s2n+1d2, wheren=fds/l−sds/l mod 1dg. For example, if
ds=1.5l, then n=1 and thereforeFn=9, as shown in Fig.
4(a). Furthermore, the number of each type of fixed point is
expressed as(i) number of stable nodes,Fsn=n2, (ii ) number
of saddle points,Fsdn=2nsn+1d, and(iii ) number of unstable
nodes,Fun=sn+1d2. One can see clearly thatFn=Fsn+Fsdn

+Fun. Note that these relationships can be used fords
ù1.5l. For ds,1.5l, Fn=Fun=1 as mentioned above.

A bifurcation diagram characterizing the stability of the
spiral core drift under a square-domain feedback control is
shown in Fig. 5. Stable fixed points exist along the the solid
bars in this diagram, whereas the shaded bands indicate the
ranges ofds/l in which no stable fixed point can be ob-

served. Instead the spiral core moves asymptotically on
closed attractive orbits, as previously illustrated for the tra-
jectories evolving from unstable fixed points in Fig. 2[ex-
cept for Fig. 2(g) and the small attractor in the middle of Fig.
2(d)]. These properties of these orbits have some analogy to
limit cycles in phase space. The number of fixed points in-
creases stepwise with increasing domain size. Focusing on
the stable fixed points(solid bars), their number increases as
1, 4, 9,…, corresponding to the relationFsn=n2 mentioned
above. In addition, the stability of the fixed points changes
also with enlarging the domain. For example, consider the
stability of the fixed point located at the center of the domain
(distancel =0): the dynamics of this point is unstable for
ds/l,1.5 and becomes stable for 1.5øds/l,2.0. For
ds/lù2.0 it is unstable untilds/lù3.5. Note that the saddle
points (dashed bars) keep their characteristics with increas-
ing ds.

V. CONCLUSIONS

Our results demonstrate that the dynamics of the spiral
waves under nonlocal feedback control depends sensitively
on the geometry, shape and size of the sensory domain, from
which the feedback signal is derived. The results in Fig. 1
show that the geometry of the sensory domain is reflected in
the shape of the spiral tip trajectory. For a fixed domain
shape—e.g., a square—a small increase of the domain size
results in a decrease of the trajectory size as seen when com-
paring Fig. 2(b) with 2(c) and Fig. 2(f) with 2(g). Several
shapes of the trajectory can be observed by enlarging the
domain. Along the axis of increment of the domain size, the
dynamics can be divided into two types, stable and unstable
rotation, as shown in Figs. 2 and 5.

An explanation of the numerically observed effects is pro-
posed by using flow maps constructed from the analysis of
the feedback signal. The flow maps in Fig. 3 reveal that our
feedback forcing leads to the existence of a discrete set of
stable square-shaped orbits, which appear to be attractors for
the spiral core drift. In addition, the flow maps demonstrate
that the local and global dynamics of the spiral wave can be
drastically changed by switching the sign of the feedback
gain [see Figs. 3(a) and 3(b)]. It is shown that the shape and
size of the trajectories of the spiral wave tip, as well as the
stability of the spiral rotation, can be changed by varying the
size or shape of the sensory domain. We suggest that the
feedback method introduced in this work offers an efficient
tool for controlling the dynamics of excitable media in biol-
ogy [15–17].
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FIG. 5. Bifurcation of the spiral wave rotation under confined-
domain feedback control. Number of fixed points inside the sensory
domain is illustrated as a function of the normalized size of the
domain,ds/l. Distancel from the domain center of the fixed point
is shown on they axis. Solid, dashed, and dotted bars indicate the
fixed points: stable node, saddle point, and unstable node, respec-
tively. Inserted numbers show the total number of fixed points for
each range ofds. Gray bands indicate the range where no stable
rotating spirals exist.
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